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Abstract

We consider single facility location problems with equity measures, de0ned on networks.
The models discussed are, the variance, the sum of weighted absolute deviations, the maximum
weighted absolute deviation, the sum of absolute weighted di2erences, the range, and the Lorenz
measure. We review the known algorithmic results and present improved algorithms for some
of these models.
? 2002 Elsevier B.V. All rights reserved.
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1. Introduction

During the last two decades there has been a major e2ort to develop location models
capturing more features of real problems. In particular, in the public sector the issue
of equity becomes relevant when locating facilities. However, while for e;ciency and
e2ectiveness there is almost a consensus that median and center, respectively, are the
most representative objective functions, for purposes of equity there does not seem to
be an agreement on the proper criteria. One can 0nd in the literature a plethora of
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functions measuring the inequality of the distribution of distances from demand points
to the facility. Two main di2erent lines of research can be observed regarding location
models focusing on equity issues.
The 0rst one deals with general aspects such as: how to measure equality, how

to de0ne equality measures, what properties equality functions have and what they
should have, what the relative positions of the solutions provided by the corresponding
optimization problems are and the comparisons among the standardized functions. These
topics have been studied in several papers [27,9,26,7]. A review of the existing literature
on equity measurement in Location Theory is given by Marsh and Schilling [22]. An
interesting discussion on how to select an appropriate equality measure is contained in
the paper by Eiselt and Laporte [6].
The second line of research is oriented towards obtaining e;cient algorithms for

solving location problems involving equality measures. The utility of this research lies
not only in supplying good algorithms but it will also allow one to design more gen-
eral computational experiments for understanding the behavior of and the relationships
among the optima of the di2erent associated problems.
We list below some of the most frequently considered equity location models. The

most popular models are those in which the variance measure is applied. Maimon [20]
obtained a linear time algorithm for the variance location problem on tree networks.
Kincaid and Maimon [13] extended this algorithm to the class of 3-cactus graphs
satisfying the triangular inequality. The same procedure of reducing 3-blocks to sub-
trees is applied in [14], for the discrete case. Hansen and Zheng [10] have proposed
an O(mn log n) time algorithm for 0nding the minimum variance point in a network
with n nodes and m edges. Berman [2] has combined e;ciency and equality mea-
sures into three models: minimizing the variance subject to an upper bound on the
average distance, minimizing the average subject to an upper bound on the variance,
and minimizing a linear utility function of the average and the variance. Other recent
approaches to the variance measure can be found in [15–17].
A second measure is the mean or the sum of weighted absolute deviations from

the average distance. This objective was used by Berman and Kaplan [3], where they
obtain an O(mn2) time algorithm to 0nd an optimal solution on a general network.
Tamir [28] presented a modi0ed algorithm of O(mn log n) complexity.
The maximum weighted absolute deviation is considered by LEopez-de-los-Mozos and

Mesa in [18]. Based on Hershberger’s algorithm for constructing the upper envelope of
n segments, an O(mn2 log n) time algorithm for the corresponding problem is obtained
in [18]. In the above three models: variance, sum of absolute deviations and the maxi-
mum deviation, the objective is a monotone function of the deviations from the average
distance. We now list and review results for equality measures that do not explicitly
depend on these deviations. Minimizing the range, which is a measure conceptually
related to the maximum absolute deviation, amounts to minimizing the di2erence be-
tween the maximum and the minimum weighted distances. An O(mn log n) algorithm
for solving this model on a general network can be obtained by applying the algorithm
in [4]. Another equality measure, the sum of weighted absolute di2erences between
all pairs of customers, has also been studied by LEopez-de-los-Mozos and Mesa [19].
For general networks they present an O(mn2 log n) time algorithm. Finally we note
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Table 1
Bold letters indicate new results in the paper

Equality measures in networks

General networks Trees

Complexity Ref. Complexity Ref.

Variance O(mn log n) [10] O(n) [20]
SADa O(mn log n) [28] O(n2)
MADb O(mn2) O(n2)
SAWDc O(mn2 log n) [19] O(n2 log2 n)
Range O(mn log n) [4] O(nk log2 n)d [4]
Lorenz O(mn2 log n) O(n2 log2 n)

aMean (sum) absolute deviation with respect to the average.
bMaximum absolute deviation with respect to the average.
cSum of absolute weighted di2erences.
dk depends on the structure of the tree. For paths k =O(1), but there are trees with k =S(n).

the use of the intricate Lorenz measure for the purpose of equalizing location on tree
networks, by Maimon [21]. He derives an O(n3 log n) time algorithm for this model.
In this paper we develop modi0ed algorithms for some of the models listed above. We
consider the case of a general network, as well as tree networks. Our 0nal results are
summarized in Table 1.

2. Notation and de�nitions

Let G = (V; E) be an undirected connected graph with node set V = {v1; : : : ; vn}
and edge set E. Suppose that |E| = m. Each edge e∈E, has a positive length le,
and is assumed to be recti0able. In particular, an edge e = (vr; vs) is identi0ed with
an interval of length le so that we can refer to its interior points. An interior point is
identi0ed by its distance along the edge from the two nodes vr and vs. Let A(G) denote
the continuum set of points on the edges of G. We also view A(G) as a connected
set which is the union of m intervals. The edge lengths induce a distance function
on A(G). For any pair of points x; y∈A(G), we let d(x; y) denote the length of a
shortest path P(x; y), connecting x and y. A(G) is a metric space with respect to the
above distance function. We refer to A(G) as the network induced by G and the edge
lengths {le}.
Each node vi, i = 1; : : : ; n, is also viewed as a location site of a demand point or

a customer. vi is associated with a pair of nonnegative weights, si and wi. si can be
interpreted as the inverse of the (constant) speed of the customer situated at vi. Thus,
if there is a server located at some point x∈A(G) the travel time of the customer to
the server is sid(vi; x). wi may represent the number of times the customer will travel
to the server. Alternatively, wi can be viewed as the number of customers, all having
speed si, located at vi.
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We now de0ne the equality measures which are the subject of this paper. For each
x∈A(G), let di(x) = d(vi; x); i = 1; : : : ; n. Let W =

∑n
i=1 wi. We de0ne the average

travel time by

zm(x) =
n∑
i=1

wisidi(x)=W:

Recall that a point x∈A(G), minimizing zm(x) is called a weighted median of the
network. It is well known that there is always at least one node which is also a
weighted median.
Next we consider several equality measures de0ned by the following objective

functions:

f0(x) =
n∑
i=1

wi(sidi(x)− zm(x))2=W;

f1(x) =
n∑
i=1

wi|sidi(x)− zm(x)|=W;

f2(x) = max
i=1;:::; n

wi|sidi(x)− zm(x)|;

f3(x) =
n∑
i=1

n∑
j=1

|wisidi(x)− wjsjdj(x)|;

f4(x) = max
i=1;:::; n

wisidi(x)− min
i=1;:::; n

wisidi(x):

Minimizing f0(x) asks for the location minimizing the variance, and f1(x) amounts to
0nding the location minimizing the mean or the sum of absolute deviations in travel
times of the W customers. Similarly, with f2(x) as the equality measure, we wish to
minimize the maximum weighted absolute deviation. f3(x) is the sum of all weighted
di2erences. Finally, f4(x) is the range of variation of the weighted distances.
In addition to the above measures we will also consider the Lorenz equality measure,

f5(x), which is explicitly de0ned in Section 7.
Our general solution approach to optimize the equality measures on A(G) is based

on decomposing the problem, and solving (independently) a restricted problem on each
edge. Thus, the properties of the function zm(x) and the functions {|sidi(x) − zm(x)|}
on an edge are relevant.
Consider an edge e= (u; v)∈E. For each vertex vi ∈V , the function bi(x) = sidi(x),

restricted to this edge, is concave, piecewise linear with at most two segments with
slopes si and −si, respectively. (Its breakpoint is called a bottleneck point.) Therefore,
the function zm(x) is concave and piecewise linear on e, and all its breakpoints are
bottleneck points. Let us denote by Be the set of bottleneck points of the edge e∈E.
Since there is at most one bottleneck point for each vertex on each edge, |Be|6 n.

The di2erence sidi(x)− zm(x) changes sign at most four times on each edge. Let Ie
be the set of (at most) 4n intersection points of the functions sidi(x); i=1; 2 : : : ; n, with
zm(x) on the edge e=(u; v). The sorting of the O(n) points in Be ∪ Ie determines O(n)
intervals or secondary regions on the edge, each of them limited by two consecutive
points of Be∪ Ie∪{u; v}. Let [xj(e); xj+1(e)] denote such a secondary interval. Then all
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functions sidi(x); i=1; : : : ; n, as well as zm(x), are linear over this interval. Moreover,
each function sidi(x) is either above (or coincides at some points) or below the function
zm(x). Denote by

N+
j (e) = {i∈{1; : : : ; n}|sidi(x)¿ zm(x); ∀x∈ (xj(e); xj+1(e))};

N−
j (e) = {i∈{1; : : : ; n}|sidi(x)¡zm(x); ∀x∈ (xj(e); xj+1(e))}:

For each pair of nodes vi; vj, the functions bi(x)=sidi(x) and bj(x)=sjdj(x) intersect
at most twice on the edge e. Let Fe denote the set of O(n2) intersection points of all
pairs of functions on e, and let He = Fe ∪ Be ∪ {u; v}. Additionally, the functions
ci(x) = wisidi(x) and cj(x) = wjsjdj(x) intersect at most twice on the edge e. Let Ce
denote the set of O(n2) intersection points of all pairs of ci(x), cj(x) functions on
e, and let De = Ce ∪ Be ∪ {u; v}. (For convenience we view the sets De and He as
multi-sets, i.e., if several pairs of functions intersect at the same point, then this point
is accordingly multiplied in the corresponding set.)

3. The mean absolute deviation problem

In this section we consider the minimization of the function f1(x). As mentioned in
the introduction the special case where all customers have the same speed, i.e., si = s,
for i = 1; : : : ; n, was solved by Berman and Kaplan [3] in O(mn2) time. Tamir [28]
presented a modi0ed solution approach improving the bound to O(mn log n). It is easy
to see that the algorithm in [28] is directly applicable to the general case of arbitrary
{si} without a2ecting the O(mn log n) bound. This bound provides an O(n2 log n) time
algorithm when it is applied to the particular case of tree networks. We will next show
how to improve this bound and solve the problem on a tree in O(n2) time. More
speci0cally, we show how to minimize the objective on each edge of the tree in O(n)
time.
In order to determine the local minima on each edge e, the restricted problem can

be formulated as a linear program:

min
n∑
i=1

yi

yi¿wi(sidi(x)− zm(x)); i = 1; 2; : : : ; n;

yi¿− wi(sidi(x)− zm(x)); i = 1; 2; : : : ; n;

06 x6 le;

in which sidi(x)− zm(x) is linear since both sidi(x) and zm(x) are linear on each edge.
This formulation can be considered as the dual of a Multiple Choice Knapsack

Problem for which Zemel [29] obtained a linear time algorithm based on adaptation of
Megiddo’s algorithm for linear programming in 0xed dimension, [23]. Hence, in O(n)
time we identify a minimizer of f1(x) on each edge e. The total time to solve the
problem is therefore O(n2).
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4. The maximum weighted absolute deviation problem

The most common equality measures used in location problems, the variance and the
mean absolute deviation, do not su;ciently account for the worst performance of the
system. In order to overcome this drawback, the maximum weighted absolute deviation
measure, f2(x), has been proposed.
For the problem of minimizing the maximum weighted absolute deviation an

O(mn2 log n) time algorithm, based on the determination of the non-dominant inter-
section points of all pairs of weighted absolute deviation functions and using the upper
envelope in each primary region, was proposed in [18]. (Actually, [18] considers only
the case si = 1; i = 1; : : : ; n.)
However, we will next show that a di2erent approach based on solving a linear

program on each secondary region improves the time complexity to O(mn2).
Consider an edge e = (u; v)∈E. Consider the set of points, Be ∪ Ie ∪ {u; v} on e,

de0ned above. The O(n) points in Be ∪ Ie induce O(n) intervals or secondary regions
on the edge, each of them limited by two consecutive points of Be ∪ Ie ∪ {u; v}. Let
[xj(e); xj+1(e)] be such a secondary interval. Then the problem

min
x∈[xj(e);xj+1(e)]

max
i=1;:::; n

wi|sidi(x)− zm(x)|

can be formulated as

min y

y¿wi(sidi(x)− zm(x)); i∈N+
j (e);

y¿− wi(sidi(x)− zm(x)); i∈N−
j (e);

xj(e)6 x6 xj+1(e):

The above linear program can be solved in O(n) time by the algorithm in [23].
In each edge the procedure involves the sorting of O(n) points, which can be done

in O(n log n) time, and solving O(n) linear programs. Thus the resulting time is O(n2)
per edge and O(mn2) for the whole network.
The above bound reduces to O(n3) for tree networks. However, using the arguments

of the previous section we observe that it takes only O(n) time to 0nd the best solution
on each edge e. Speci0cally, the restricted problem on e can be formulated as the
following two variable linear program, and therefore can be solved in O(n) time by
the algorithm in Megiddo [23].

min y

y¿wi(sidi(x)− zm(x)); i = 1; 2; : : : ; n;

y¿− wi(sidi(x)− zm(x)); i = 1; 2; : : : ; n;

06 x6 le:

We conclude that for tree networks f2(x) can be minimized in O(n2) time.
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5. The maximum absolute deviation problem

In this section we consider the unweighted case where there is a single customer at
each node vi, i.e., wi =1 for i=1; : : : ; n. We will show that the O(mn2) bound for the
general case can be improved to O(mn log2 n) when

f2(x) = max
i=1;:::; n

|sidi(x)− zm(x)|:

For this problem we use a di2erent approach to solve the restricted problem on each
edge.
Consider an edge e = (u; v)∈E. Using the notation in the previous section let

x1(e)¡x2(e)¡ · · ·¡xt(e); t =O(n);

be the sorted sequence of distinct points in Be ∪ Ie ∪ {u; v}. For each interval
[xj(e); xj+1(e)] consider both, the set of indices of the functions sidi(x) above and below
zm(x): N+

j (e) and N−
j (e).

Next, de0ne the following piecewise convex functions over the interval [xj(e); xj+1(e)].

gj(x) = max
i∈N+

j (e)
sidi(x);

hj(x) = max
i∈N−

j (e)
{−sidi(x)};

Fj(x) = max{gj(x)− zm(x); hj(x) + zm(x)}:
Then, to 0nd the best point on this interval we need to 0nd a minimizer of Fj(x).
Equivalently we will solve the following linear problem dynamically, using the ma-
chinery developed in Hershberger and Suri [12].

min y;

y¿ gj(x)− zm(x);

y¿ hj(x) + zm(x);

xj(e)6 x6 xj+1(e):

With the above machinery we (separately) maintain dynamically the breakpoints (or
the slopes) of the functions gj(x) and hj(x). In particular, for each value of x we can
compute both functions and their directional derivatives in O(log n) time. Hence, for
each value of x, we can determine in O(log n) time whether x is to the left or to
the right of a minimizer of the function Fj(x). Therefore, by applying a binary search
over the breakpoints of gj(x) and hj(x) we can 0nd a minimizer of Fj(x) over the
given interval in O(log2 n) time. (We suspect that the latter bound can be improved to
O(log n) but we do not yet know how to achieve that.)
Next we discuss the total e2ort needed to maintain the sequence of functions {gj(x)}

and {hj(x)}. Each of these functions is an upper envelope of a collection of at most n
linear functions, which is maintained dynamically by the data structure in Hershberger
and Suri [12]. It takes O(log n) time to delete or insert a linear function, if, as is the case
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here, the sequence of insertions and deletions is known a priori. To explain and identify
this sequence, consider two consecutive intervals, [xj(e); xj+1(e)] and [xj+1(e); xj+2(e)].
Suppose 0rst that xj+1(e) is in Be. Then it is a maximum point of some function
sidi(x). (To simplify, assume that there is only one such index i, and xj+1(e) is not in
Ie. Otherwise we perform the following step sequentially for all relevant indices.) We
now delete the linear function, which is the increasing part of sidi(x), and replace it in
the same collection, by the decreasing part of that function. Respectively, we update
the (linear) function zm(x) by subtracting the increasing part of sidi(x) and adding its
decreasing part. Next suppose that xj+1(e) is in Ie. Then there is a function sidi(x)
which intersects zm(x). (Again, to simplify the discussion, suppose that there is only
one such index i, and xj+1(e) is not in Be. Also assume that it is the increasing part
of sidi(x) which intersects zm(x), and zm(xj+1(e)−)¿sidi(xj+1(e)−). In this case the
function sidi(x) is in the collection N−

j (e).) We delete i from N−
j (e) to obtain N−

j+1(e),
and add it to N+

j (e) to obtain N+
j+1(e). (The other cases are treated similarly.) From

the discussion in the previous sections it is clear that the total number of deletions
and insertions over the underlying edge e is O(n). Moreover, the sequence of deletions
and insertions can be determined a priori during the process of computing and sorting
the sequence x1(e); x2(e); : : : ; xt(e). Therefore, after an initial e2ort of O(n log n), we
can conclude that the total e2ort to perform all the deletions and insertions is also
O(n log n) according to the algorithm proposed by Hershberger and Suri [12]. As noted
above the minimization over each interval [xj(e); xj+1(e)] takes O(log2 n) time. Thus,
in O(n log2 n) time we 0nd a minimum point on an edge, leading to an O(mn log2 n)
time algorithm for the entire network.

6. The sum of absolute weighted di#erences problem

In this section we consider the minimization of the objective

f3(x) =
n∑
i=1

n∑
j=1

|wisidi(x)− wjsjdj(x)|:

An O(mn2 log n) algorithm to minimize this measure over a general network is given
in LEopez-de-los-Mozos and Mesa [19]. We brieUy describe such an algorithm, and then
show an improved algorithm for tree networks.
Consider an edge e=(u; v)∈E. We will show how to 0nd a minimizer of f3(x) on

e in O(n2 log n) time.
The function f3(x) is clearly linear over each interval of e connecting two adjacent

points of De. In particular, there is a point in De which minimizes f3(x) over e.
Therefore, to optimize f3(x) over e it is su;cient to evaluate this objective at all
points of De. To perform the latter task, we 0rst sort the points in De, consuming
O(n2 log n) time.
To evaluate the objective at a point x, we note that if the ordering of the elements in

the multi-set {ci(x)} is known, f3(x) can be computed in O(n) time. (Recall that ci(x)=
wisidi(x) was de0ned in Section 2.) Speci0cally, assume without loss of generality that
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c1(x)6 c2(x)6 · · ·6 cn(x); i = 1; : : : ; n. Also, de0ne Ck(x) = c1(x) + · · ·+ ck(x), for
k = 1; : : : ; n. Then,

f3(x) = 2[((n− 1)cn(x)− Cn−1(x)) + ((n− 2)cn−1(x)− Cn−2(x))

+ · · ·+ (c2(x)− C1(x))];

or

f3(x) = 2
n∑
i=1

(2i − n− 1)ci(x):

We start the evaluation by computing f3(x) at the node u, using O(n log n) time. We
then follow Le, the (sorted) sequence of points in the multiset De. It is easy to see
that if xq and xq+1 are consecutive points of Le, then it takes constant time to compute
f3(xq+1) from f3(xq). Therefore, the total e2ort to compute f3(x) at all points in De

is dominated by O(n2 log n), the e2ort needed to sort De. The total e2ort to minimize
f3(x) over the entire network is O(mn2 log n). The above bound reduces to O(n3 log n)
for tree networks. However, we will show how to reduce this bound to O(n2 log2 n),
by solving the problem on each edge of the tree in O(n log2 n) time.
Consider an edge of the tree e = (u; v). Then, for each pair of nodes vi; vj, the

function wisidi(x)−wjsjdj(x) is linear over e. In particular, f3(x) is convex there. For
i = 1; : : : ; n, suppose that the linear representation of the function wisidi(x) over e is
given by wisidi(x) = +ix + ,i. Then De consists of all points of the form xi; j = (,j −
,i)=(+i − +j); i; j = 1; : : : ; n; i 	= j.
As mentioned above there is a point in De which is a minimizer of f3(x) over e,

and it takes O(n log n) time to evaluate the function at any point x. Using the convexity
of f3(x), and the special structure of the set De we can apply the search procedure in
Megiddo and Tamir [24], with the modi0cation in Cole [5], to 0nd the minimum in
O(n log2 n) time. This will lead to an O(n2 log2 n) algorithm for 0nding the minimum
of f3(x) on a tree network.

7. Maximizing the Lorenz measure

In this section we consider another equality index, called the Lorenz measure, which
is quite common and useful in economics to de0ne and measure equity in the income of
a population. Maimon [21] has adapted this measure to location models. He argues that
choosing the location of the server according to this measure ensures that the distance to
the population is as much as possible homogenously distributed. (The reader is referred
to Maimon [21] for additional characteristics of this criterion.) Maimon presents an
O(n3 log n) algorithm to 0nd the optimal location on a tree with respect to the Lorenz
measure. In an unpublished report, written more than ten years ago, Hansen and Zheng
[11] gave an O(n2 log n) improved algorithm for this model. We consider a weighted
version of this model, where we replace the distances to the server by travel times. We
focus on the algorithmic aspects of this generalized model. Speci0cally, we will present
an O(n2 log2 n) algorithm to 0nd an optimal solution to the generalized model on a
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tree. (For the case treated by Maimon [21] the complexity of our algorithm reduces
to O(n2 log n), which matches the improvement reported by Hansen and Zheng [11].)
We also show how to extend the results to general networks.
To facilitate the discussion and introduce the Lorenz measure consider a point

x∈A(G), where a service facility is to be located. The travel time of a customer at vi
to x is sidi(x). Assume, without loss of generality, that b1(x)6 b2(x)6 · · ·6 bn(x),
where bi(x) = sidi(x); i = 1; : : : ; n. For each k = 1; : : : ; n, de0ne Wk = w1 + · · · + wk .
(Note that the latter de0nition depends on the ordering of {bi(x)}. Also recall that with
the notation introduced above Wn =W . Since in this section wk is interpreted as the
proportion of the population situated at vk , we assume that Wn = W = 1, and de0ne
W0 = 0.)
Following the derivation and expressions in Maimon, [21], we de0ne

L(x) =
n∑

k=1

wk




k−1∑
j=1

wjbj(x) + wkbk(x)=2


 :

Rearranging terms we obtain,

L(x) =
n∑

k=1

wk(W −Wk−1 − wk=2)bk(x):

The Lorenz measure, f5(x), is then de0ned by

f5(x) = 2L(x)=zm(x):

(We note that the model discussed by Maimon [21] corresponds to the case where
si = 1 for i = 1; : : : ; n.) The objective is to 0nd a point in A(G) maximizing f5(x).

We 0rst observe some useful properties of the functions involved. Consider an edge
e=(u; v) of the network G=(V; E). The function L(x) is clearly linear over each interval
of e connecting two adjacent points of He. (See Section 2.) From the above discussion
we also recall that the average function zm(x) is piecewise linear and concave on e. Be
is the set of breakpoints of zm(x). In particular, the Lorenz function, f5(x) is a ratio
of two linear functions over each interval of e connecting two adjacent points of He.
Therefore, there is a point in He which maximizes f5(x) over e. To 0nd an optimum
point it is su;cient to evaluate this objective at all points of He. The total e2ort to
perform this task, is O(n2 log n). It is very similar to the procedure described in the
previous section to evaluate the function f3(x), and therefore we skip the details. We
only note that the e2ort is dominated by the O(n2 log n) time needed to compute and
sort the O(n2) elements of He. It is easy to see that with the above expression for L(x),
it takes only constant time to compute f5(x) at each additional point of the sorted list
of points obtained from He. To summarize, we conclude that in O(mn2 log n) time we
can locate a point of A(G) maximizing the Lorenz measure f5(x).
For tree networks, the above bound reduces to O(n3 log n), the bound reported by

Maimon [21]. However, we will show how to reduce this bound to O(n2 log2 n), by
solving the problem on each edge of the tree in O(n log2 n) time. (The approach is
again very similar to the one described above for optimizing f3(x). However, some of
the ingredients are di2erent.)
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Consider an edge of the tree e= (u; v). Then, for each node vi, the function bi(x) =
sidi(x) is linear over e. Moreover, the proof given in Maimon [21] for the case where
si=1, for i=1; : : : ; n, showing that L(x) is concave and piecewise linear, extends directly
to arbitrary nonnegative {si}. Thus, L(x) is a piecewise linear and concave function
over e. He is its set of breakpoints. Also, zm(x) is linear over e. Using Proposition
5.20 in Avriel et al. [1], we conclude that f5(x) is semistrictly quasiconcave over e.
In particular, by Theorem 3.37 in [1], every local maximum of f5(x) on e is a global
maximum over e. Thus, to 0nd a maximizer of f5(x) over an edge, we can apply a
binary search over He, and locate a maximum point in He, by evaluating the objective
f5(x) at O(log n) points. We perform the search on He without explicitly generating
this set of O(n2) cardinality.
For i=1; : : : ; n, suppose that the linear representation of the function bi(x) = sidi(x)

over e is given by sidi(x) = -ix + .i. Then He consists of all points of the form
xi; j = (.j − .i)=(-i − -j); i; j = 1; : : : ; n; i 	= j.
As mentioned above there is a point in He which is a maximizer of f5(x) over

e. It takes O(n log n) time to evaluate the function at any point x. Using the above
quasiconcavity of f5(x), and the special structure of the set He we can apply the search
procedure in Megiddo and Tamir [24], with the modi0cation in Cole [5], to 0nd the
maximum in O(n log2 n) time. This will lead to an O(n2 log2 n) algorithm for 0nding
the maximum of f5(x) on a tree network.
An improvement is possible for the model considered in Maimon, [21], i.e., si = 1

for i=1; : : : ; n. In this case the structure of He is simpler. Speci0cally, for e=(u; v), let
Tu (Tv) be the subtree containing the node u (v), obtained by cutting the edge e. Then
for each node vi ∈Tu, we can assume that bi(x) = x + .i, where .i = d(vi; u), and for
each node vj ∈Tv, we can assume that bj(x)=−x+.j, where .j=d(vj; u). Therefore, He

consists of all points of the form xi; j=(.j−.i)=2, vi ∈Tu, vj ∈Tv. Moreover, if we sort
the coe;cients .k=d(vk ; u); k=1; : : : ; n, then for each point x of He it takes only O(n)
time to sort {b1(x); : : : ; bn(x)}. When the sorting is known, it follows from the above
expressions that f5(x) can then be evaluated in O(n) time. With these tools we can
now directly apply the search procedure in Megiddo et al. [25], and Frederickson and
Johnson [8], to 0nd the maximum in O(n log n) time. This will lead to an O(n2 log n)
algorithm for 0nding the maximum of f5(x) on a tree network in the case where
si = 1; i = 1; : : : ; n.
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